The invariants of orthogonal group actions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariants of Formal Group Law Actions

0. Introduction. In this note, k denotes a field of characteristic p > 0, and the letters T, X and Y are formal indeterminants. Let F: k[[T]] —• /c[[X,Y]] be a (fixed) one-dimensional formal group law [Dieudonné, Hazewinkel, Lazard, Lubin] of height h > 0. Let V denote a k[[T]] module of finite length. Suppose Ann(V) = (T). Let q = p denote the least power of p such that n < q. It follows that ...

متن کامل

Rational invariants of ternary forms under the orthogonal group

In this article we determine a generating set of rational invariants of minimal cardinality for the action of the orthogonal group O3 on the space R[x, y, z]2d of ternary forms of even degree 2d. The construction relies on two key ingredients: On one hand, the Slice Lemma allows us to reduce the problem to dermining the invariants for the action on a subspace of the finite subgroup B3 of signed...

متن کامل

The symplectic vortex equations and invariants of Hamiltonian group actions

In this paper we define invariants of Hamiltonian group actions for central regular values of the moment map. The key hypotheses are that the moment map is proper and that the ambient manifold is symplectically aspherical. The invariants are based on the symplectic vortex equations. Applications include an existence theorem for relative periodic orbits, a computation for circle actions on a com...

متن کامل

Separating Invariants for Arbitrary Linear Actions of the Additive Group

We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

متن کامل

Invariants of Algebraic Group Actions in Arbitrary Characteristic

Let G be an affine algebraic group acting on an affine variety X. We present an algorithm for computing generators of the invariant ring K[X] in the case where G is reductive. Furthermore, we address the case where G is connected and unipotent, so the invariant ring need not be finitely generated. For this case, we develop an algorithm which computes K[X] in terms of a so-called colon-operation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1993

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700015720